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ABSTRACT
The database industry is about to undergo a fundamen-
tal transformation of unprecedented magnitude as enter-
prises start trading their well-established database stacks
for cloud-native database technology in order to take ad-
vantage of the economics cloud service providers promise.
Industry experts and analysts expect 2017 to become the
watershed moment in this transformation as cloud-native
databases finally reached critical mass and maturity. Enter-
prises eager to move to the cloud face a significant dilemma:
moving the content of their databases to the cloud is rela-
tively easy. However making existing applications work with
new database platforms is an enormously costly undertaking
that calls for rewriting and adjusting of 100’s if not 1,000’s
of applications.

Datometry has developed a next generation virtualization
technology that lets existing applications run natively on
new database systems. Using Datometry’s platform, en-
terprises can move rapidly to the cloud and innovate and
create competitive advantage as a matter of months instead
of years. In this paper, we present Datometry Hyper-Q, a
new type of virtualization platform that implements this vi-
sion. We describe technology and use cases and demonstrate
effectiveness and performance of this approach.

1. INTRODUCTION
Over the course of the next decade, the database mar-

ket, a $40 billion industry, is about to face fundamental
disruption. Cloud-native databases such as Microsoft SQL
Data Warehouse [22], Amazon Redshift [18], Google Big-
Query [7], and others promise to be functionally equivalent
to their counterparts on premises, yet provide enterprises
with unprecedented flexibility and elasticity. All while be-
ing highly cost-effective: Instead of considerable up-front
expenses in the form of hardware and software license costs,
cloud-native databases offer a pay-as-you-go model that re-
duces databases effectively to a set of APIs. They let users

Copyright (C) 2019 Datometry Inc. All rights reserved.
Datometry and the Datometry logo are registered trademarks of Datometry, 
Inc. All other trademarks are the property of the respective companies. The 
information contained in this document is subject to change without notice 
or obligation.
.

query or manipulate data freely, yet shield them from the
burden and headaches of having to maintain and operate
their own database.

The prospect of this new paradigm of data management
is extremely powerful and well-received by IT departments
across all industries [2]. However, it comes with signifi-
cant adoption challenges. Through applications that de-
pend on the specific databases they were originally written
for, database technology has over time established some of
the strongest vendor lock-in in all of IT. Moving to a cloud-
native database requires adjusting or even rewriting of ex-
isting applications and migrations may take up to several
years, cost millions, and are heavily fraught with risk.

CIOs and IT leaders find themselves increasingly in a co-
nundrum weighing the benefits of moving to a cloud-native
database against the substantial switching cost. The situa-
tion is further complicated by a myriad of parameters and
configurations to choose from when moving to the cloud:
different systems offer different characteristics and represent
technology at different levels of maturity.

In this paper, we present Adaptive Data Virtualization
(ADV), based on a concept originally developed to bridge
data silos in real-time data processing [13], and develop
a platform approach that solves the problem of adopting
cloud-native databases effectively and at a fraction of the
cost of other approaches. ADV lets applications, originally
developed for a specific database on-premises, run natively
in the cloud—without requiring modifications to the appli-
cation. The key principle of ADV is the intercepting of
queries as they are emitted by an application and subse-
quent on-the-fly translation of those queries from the lan-
guage used by the application (SQL-A) into the language
provided by the cloud-native database (SQL-B), see Fig-
ure 1. The translation must be aware of semantic differences
between the systems and compensate for missing function-
ality in many cases.

The overwhelmingly positive receptions by customers and
technology partners alike underlines the benefits of ADV
over a conventional migration approach along three dimen-
sions:

1. Short time to value: ADV can be deployed instantly
and requires little or no build-out and implementa-
tion. This eliminates the time for adjusting, rewriting
or otherwise making existing applications compatible
with the new target platform.

2. Low cost: Much of the cost in migration projects is in-
curred by the manual translation of SQL embedded in
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Figure 1: Application/database communication before re-platforming (a) and after (b). Applications remain
unchanged, continue to use query language SQL-A.

applications and subsequent iterations of testing the
rewrites. Being a software solution, ADV eliminates
both manual interaction and time-consuming and ex-
pensive test phases entirely.

3. Reduced risk: Since ADV leaves existing applications
unchanged, new database technology may not only be
adopted rapidly, but also without having to commit
significant resources or time. This reduces the risk
to the enterprise substantially as projects can be fully
tested in advance and, in the unlikely event that re-
sults do not meet expectations, switching back to the
original stack is instant and inexpensive.

In this paper we present use cases and technical under-
pinnings of ADV and discuss the trade-offs consumers of
the technology need to be aware of when making decisions
about when to deploy it.

Roadmap. The remainder of the paper is organized as
follows. Section 2 reviews the state of the art of database
re-platforming today and outlines standard procedures. In
Section 3 we develop a catalog of desiderata or requirements
for ADV as a general concept. Section 4 provides a de-
tailed overview of the technology and relevant implemen-
tation choices. The major use cases that we identified in
practice are illustrated in Section 5 and complemented with
performance analysis in Section 6. We conclude the paper
with a review of related work in Section 7.

2. CONVENTIONAL DATA WAREHOUSE
MIGRATION

The migrating or re-platforming of a database and its
dependent application is a highly involved process around
which an entire industry has been established. However,
practitioners who do not have first-hand experience in this
subject matter may not be familiar with the complexities
involved. For the reader’s benefit we detail the intricacies of
what is considered state of the art.

Here, we consider data warehouses as they are the most
prevalent and among the costliest databases to deal with.
Conversely they offer the biggest benefits when moving to

the cloud. Also, we focus on the practical case of moving re-
lational data warehouses which has evolved as the industry’s
most pressing use case.

For the purpose of the exposition, we assume the deci-
sion to move to the new database has been made, i.e., nec-
essary investigations into performance, availability etc. are
complete. These are significant tasks in and by themselves,
however, they are not in the scope of this paper.

Migration projects have multiple stages. Some of these
can be executed in parallel, others require serialization, for
the purpose of this paper, we will discuss only technical chal-
lenges and skip project management challenges even though
they are vital to the success of a re-platforming project.

2.1 Discovery
In order to compile a realistic project plan, a full inventory

of all technologies used, i.e., all applications connected to the
database, is needed. This activity needs to look at every
single component and determine among other things:

1. Inventory. Application type and technology for ev-
ery single client needs to be evaluated including Busi-
ness Intelligence (BI) and reporting, but also ad-hoc
uses. This includes proprietary and 3rd party clients,
including embedded use cases where seemingly innocu-
ous business applications such as Microsoft Excel emit
queries.

2. Connectors. Drivers and libraries used by every con-
necting component need to be cataloged to understand
if they can be replaced. This step often discovers sur-
prising incompatibilities with respect to the new target
system and may require custom builds of connectors.

3. SQL language. A gap analysis determines what fea-
tures, specifically complex features, are being used.
The understanding of what features may not be avail-
able on the downstream system, e.g., recursive query,
as well as proprietary features that predate standard-
ization, e.g., pre-ISO rank implementations, drives
the design and implementation of equivalent queries
and expressions based only on primitives of the new
database system.
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The discovery phase is a function of the size and complexity
of the ecosystem. This phase of a migration typically takes
up to 3-6 months, or more.

2.2 Database Content Transfer
The most prominent task though frequently neither the

most challenging nor the costliest is the transfer of the con-
tent of the original database to the cloud-native database.

2.2.1 Schema Conversion
Transferring the schema from one system to another needs

to replicate all relevant structures in the schema definition
language of the new system. While most databases by now
offer equivalent structures, there are certain structural fea-
tures that may not be transferable due to limitations in the
new system, e.g., Global Temporary Tables, Stored Proce-
dures.

In contrast to logical design features, physical database
design including indexes or other physical structures do not
necessarily need to be transferred or require separate treat-
ment once the database is transferred. Frequently, physi-
cal design choices are not portable or do not even apply to
the new database system and can therefore be ignored. A
more recent trend is to increasingly eliminate physical design
choices altogether, see e.g., Snowflake [14], XtremeData [12].

Treating schema conversion as a separate discipline has
severe shortcomings: certain features that cannot be tran-
scribed directly require a workaround that all applications
need be made aware of, i.e., simply transcribing the schema
in isolation is bound to generate functionally incomplete re-
sults. See Section 2.3 for details.

2.2.2 Data Transfer
Once a schema is transferred and established, data needs

to be transferred in bulk or incrementally. More than a se-
mantic problem, this is typically a logistical issue: for large
amounts of data, most cloud service providers offer bulk
transfer through off-line means such as disk arrays shipped
via courier services or similar. With today’s standard band-
width available between data centers and the widespread
network of cloud data centers, data transfer expect for very
large data warehouses rarely constitutes a problem though.

2.3 Application Migration
Adjusting applications to work with the new database is

a multi-faceted undertaking. On a technical level drivers,
connectivity etc. need be established. Then, SQL be it em-
bedded or in stand-alone scripts needs to be rewritten, and,
closely related to the previous, enclosing application logic
may need to be adjusted accordingly. To demonstrate some
of the challenges when translating queries from one SQL
dialect to another, consider the following example:

Example 1 Consider the following query written
in Teradata SQL dialect:

SEL
PRODUCT NAME,
SALES AS SALES BASE ,
SALES BASE + 100 AS SALES OFFSET

FROM PRODUCT
QUALIFY

10 < SUM(SALES)
OVER (PARTITION BY STORE)

ORDER BY STORE, PRODUCT NAME
WHERE CHARS(PRODUCT NAME) > 4 ;

Figure 2: Support for select Teradata features across
major cloud databases

There are several vendor-specific constructs which

make the query non-portable. For example, SEL is
a shortcut for SELECT keyword. QUALIFY fil-
ters the output based on the result of a win-
dow operation, similar to the HAVING clause for
GROUP BY clause. Moreover, the order of the
various clauses is not following the standard: OR-

DER BY precedes WHERE which is not accepted
by most other systems. Built-in functions and
operators, such as computing the length of a
string or date arithmetic, frequently differ in syn-
tax across vendors. Another widely used con-
struct not typically available in other systems is
the ability to reference named expressions in the
same query block. For example, the definition of
SALES OFFSET uses the expression SALES BASE

defined in the same block. 2

Figure 2 shows a selection of query features supported by
Teradata and frequently used in analytics workloads, con-
trasted with the percentage of leading cloud databases sup-
porting them as of the time of writing. While this list is not
meant to be complete or representative of Teradata work-
loads, the shown features include the ones that we have
encountered while working with customers to re-platform
their applications from Teradata to cloud databases. Some
of these features are non-standard SQL extensions intro-
duced by Teradata. For example, QUALIFY is a non-standard
clause that combines window functions with predicates.
Similarly, implicit joins refers to the ability to implicitly
join tables not explicitly referenced in the FROM clause.

Others are standard SQL features. However, they are ei-
ther not implemented at all, or only partially supported by
cloud databases. Those include the ability to specify col-
umn names in a derived table alias or the MERGE operation,
which inserts and/or updates records in the same statement.
While query rewriting may address some of these feature
gaps, there are many cases where it may not be possible to
do so. Some features need extensive infrastructure on the
database side to be functional. We discuss how our solution
addresses these different scenarios in Section 4.

In our experience, we can distinguish three categories of
difficulty when it comes to rewriting SQL terms and expres-
sions:
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1. The good. These are fairly simple syntactic rewrites.
For example, keywords often differ between systems,
there are slight variations between standard built-in
function names, date formats may need adjusting, etc.
The required changes are rather straightforward and
often highly localized; many can be even addressed
with textual substitution using regular expressions.

2. The bad. The next category requires a complete
understanding of the structure of a query including
proper name resolution and type derivation. Examples
for this category include Teradata’s QUALIFY clause,
NAMED terms, or the use of ordinals instead of col-
umn names in GROUP BY or ORDER BY clauses. While
a rewrite is often possible, it may involve restructuring
the query in a non-local manner, which is difficult and
error-prone, specifically in the case of complex queries.
In some cases, the new database system lacks criti-
cal functionality, e.g., control flow, which may require
pushing parts of the queries to the application layer.

3. The ugly. The last category are differences of a subtle
nature such as different ordering of NULLs in ORDER

BY expressions. They require slightly more complex
rewrites, however, they pose a particular difficulty as
they may go undetected during the migration project:
the original SQL code compiles and executes on the
new system and may produce even appropriate results
in select cases. However, correctness has been compro-
mised and leads to subtle defects that are hard to spot
and correct.

The rewritten SQL expression needs to be placed into the
application which may lead to further complications: if a
single SQL statement leads to a rewrite consisting of multi-
ple statements for the next system, the control flow of the
application needs to be adjusted accordingly.

Application migration outweighs most other processes by
far in time and cost.

2.4 Discussion
The previous sections touched on a number of technical

issues and are intended to give readers an overall sense of
the complexities of migrations. For a complete migration
many more aspects including process elements, policies, and
business priorities need to be taken into account. For our
purposes we can safely omit these and focus on the technical
elements. Nevertheless, it appears a number of misconcep-
tions from a technical point of view exist in this. We feel
two deserve being called out explicitly.

2.4.1 Migration Paradox
We found many practitioners specifically on the database

engineering side maintaining the view that transferring a
database was probably not too much of a hassle —and con-
sider the cost associated with a full migration project as
grossly exaggerated. Paradoxically, the most difficult task
about database migrations is actually not the migrating of
the database, i.e., the content transfer, but the adjusting
of applications. In fact, the transfer of the content of the
database is supported by a variety of tools that make the
transfer of database content appear simple per se. However,
the manual adaptation of applications may require rewriting
thousands of lines of SQL, significant portions of the code

in which SQL scripts are embedded in etc. Once the mag-
nitude of the changes needed and the risk associated with
them is understood, the price tag for a migration appears
justified, even when it runs into the millions.

2.4.2 Assumed Independence
Closely related to the “Migration Paradox” is the second

most common misconception which assumes independence
between transferring content and the adjusting of applica-
tions. However, transcribing the schema and/or data cannot
be dealt with independently from the migration of applica-
tions. Consider the case of missing support of data types,
for example the PERIOD type, which describes start and stop
of a time range. Few database systems support it. A simple
translation would be breaking it into two separate fields for
the two components. However, all queries that reference the
original PERIOD field need to be rewritten to deal explicitly
with the start and stop fields. We used the PERIOD type for
the sake of simplicity. However, more complex constructs
such as Global Temporary Tables are effectively impossible
to translate. As a consequence, migration tools frequently
error out in these situations and leave users with an incom-
plete translation.

3. DESIDERATA FOR DATABASE VIRTU-
ALIZATION

Database Virtualization is a highly complex affair. In
the following we lay out requirements such a solution needs
to address to be successful. In particular, we organize the
desiderata in three groups: (1) functionality, (2) operational
aspects around integrating Database Virtualization in an ex-
isting IT environment, and (3) managing and supporting of
a Database Virtualization solution in a production environ-
ment.

We refer to the original database system as DB-A and its
language as SQL-A, to the replacement database as DB-B
and SQL-B accordingly.

3.1 Functionality
Requirements in this category refer primarily to estab-

lishing equivalent behavior between original and emulated
database.

• Statements in SQL-A need to be translated into zero,
one, or more terms using SQL-B that produce an
equivalent response. Differences that need to be rec-
onciled typically include alternate keywords or simple
grammatical differences such as TOP as opposed to
LIMIT. In some cases, the original statement may be
eliminated altogether.

• Besides queries, DDL commands to create, alter or
drop objects need to be supported, e.g., management
and layout of tables, views, as well as more advanced
concepts. DDL that does not have immediately cor-
responding equivalents may require more elaborate
workarounds, e.g., tables originally defined with set
semantics may get represented as tables with unique
primary keys in systems that do not natively support
set semantics.

• Basic data types such as ODBC types are translated
straightforwardly. Compound or abstract data types,
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e.g., PERIOD type, are represented as combination of
basic data types. More complex types, including user-
defined types, may be serialized as a string represen-
tation. Additional metadata may need to be stored to
capture the full semantics of the complex data type.

• Support for native wire protocols is needed to ensure
the original applications do not need to be modified or
altered. This solves the large scale problem of having
to replace tens if not hundreds of drivers and connec-
tors across the enterprise. It also guarantees support
for applications that are used infrequently and that are
not known to the IT staff as actual clients; this is a
surprisingly common case in practice.

• Representation and translation of procedural con-
structs such as calling of functions or stored proce-
dures is required in order to support a large number of
established workloads. In the context of this work, we
focus on call semantics only and assume DB-B does
have appropriate support for representing functions.
Research on emulation of procedures and functions is
outside the scope of this paper. See also Section 8.

The above list is akin to a task list for migrating manu-
ally between databases: the underlying gaps in expressivity
need to be addressed in workarounds and implementations.
We did not list correctness as we consider it a basic, non-
negotiable requirement.

3.2 Operational Aspects
For ADV to meet standards of modern IT, a number of

operational properties must be established. These pertain to
questions around efficiency, safe operations and integration
with existing adjacent systems.

• Latency and throughput may not be impacted signifi-
cantly by ADV’s being in the data path. Most virtual-
ization technologies are of small but measurable over-
head, e.g., in compute virtualization 5-8% overhead
are typically. It stands to reason that ADV should be
of similar impact.

• Optimality is desirable, i.e., queries translated as a
result of ADV may not perform substantially slower
or in any other way suboptimal when compared to a
hand-crafted translation. We note that this property
is hard to define and even harder to measure but we
list it here for completeness as it does come up as a
customers’ concern in practice.

• As ADV is dependent on shape and structure of queries
and results, strict limits for resource consumption are
desirable in order for administrators to be able to
safely operate such a system in demanding customer
application scenarios.

• Integration with the existing IT ecosystem is required:
this includes authentication mechanisms and systems
such as Kerberos, Active Directory, or LDAP; it also
includes integration with monitoring infrastructure,
deployment frameworks, load-balancers and mecha-
nisms for fault-tolerance and high-availability.

• Scalability to satisfy concurrency and throughput re-
quirements is necessary. A successful design needs to

provide the ability to scale horizontally—by replicat-
ing instances of the ADV solution across independent
machines—as well as vertically in being able to lever-
age additional CPU cores transparently.

This second category of desiderata puts emphasis on inte-
gration and some of the points above are clearly dependent
on DB-B, the database that is chosen as a replacement.

3.3 Manageability and Supportability
The last category pertains to day-to-day operations of

such a system and reflects troubleshooting and diagnosing
as well as quality assurance elements.

• While there are typically no guarantees in sophisti-
cated industrial software projects, means to ascer-
tain correctness, including testing hooks or side-by-
side tests of different backend systems, can alleviate
concerns around correctness. In many cases a rigor-
ously executed test regimen at the vendor site might
suffice.

• Elaborate mechanisms for tracing that provide trans-
parency and visibility into the system at runtime can
cut short troubleshooting sessions and simplify the
pinpointing and diagnosing of software defects. In par-
ticular, the ability to quickly discern which component
is at fault—application, ADV, or backend database—
accelerates defect analysis greatly.

In summary, the desiderata above are not meant as a strict
requirements analysis but rather guidelines for the develop-
ment. In working with customers, we have come to under-
stand that depending on the system and application scenar-
ios at hand, some of these are negotiable, while others may
be hard requirements. That means, in many ways the devel-
opment of ADV needs to be prepared to view them as strict
and completely fulfill the requirement or offer a high degree
of approximation. See also Section 8 for further discussion.

4. HYPER-Q PLATFORM
In this section, we give a technical deep dive into the

architecture and capabilities of Hyper-Q, the world’s first
ADV solution designed to fulfill the desiderata outlined in
Section 3. Hyper-Q automates database functionality mis-
match discovery as well as schema and data transfer across
databases. However, we focus in this section on the appli-
cation re-platforming aspect, which we believe outweighs in
time and cost other database migration problems.

We describe the architecture of Hyper-Q in Section 4.1.
We then show how Hyper-Q framework allows instant appli-
cation migration across databases through powerful query
rewriting (Section 4.2) and feature augmentation (Sec-
tion 4.3) capabilities.

4.1 Hyper-Q Architecture
Hyper-Q intercepts the network traffic between applica-

tions and databases and translates the language and com-
munication protocol on-the-fly to allow application to seam-
lessly run on a completely different database. Figure 3 shows
Hyper-Q architecture. Applications are typically built on top
of database libraries including ODBC/JDBC drivers as well
as native database vendor libraries such as libpq in Postgres
or CLIv2 in Teradata. These libraries are needed to abstract



Technical White Paper
Copyright (C) 2019 Datometry Inc.

Figure 3: Architecture of Hyper-Q

the details of database communication with the application
by providing simple APIs to submit query requests and con-
sume responses.

Hyper-Q intercepts the incoming traffic from the applica-
tion and rewrites it to match the expectation of a completely
different on-premises or in-the-cloud database. When an ap-
plication request is received, it gets mapped in real time to
equivalent request(s) that the new database can comprehend
and process. After processing is done, Hyper-Q also does the
reverse translation, where database query response is con-
verted into the same binary format of the original database.
This is crucial to allow applications to work as expected by
providing query results that are bit-identical to the original
database. In the next subsections, we describe the details of
query and result translation inside Hyper-Q.

4.1.1 Protocol Handler
Network traffic between application and database includes

an exchange of network messages designed according to the
original database specifications. Different constructs need to
be implemented to emulate the native communication pro-
tocol of the original database. This includes authentication
handshake required to establish secure connection between
the application and the database, network message types
and binary formats, as well as representation of different
query elements, data types and query responses. Hyper-
Q fully implements these details providing application with
the same look-and-feel of its original database even though
the application effectively runs on a different target database
system.

The Protocol Handler component of Hyper-Q is responsi-
ble of intercepting the network message flow submitted by
the application, extracting important pieces of information
on-the-fly, e.g., application credentials or payloads of appli-
cation requests, and passing this information down to Hyper-
Q engine for further processing. When a response is ready to
be sent back to the application, the Protocol Handler compo-
nent packages the response into the binary message format
expected by the application. This completely abstracts the
application-database communication details from the rest of
Hyper-Q components.

The Protocol Handler component provides native support
of communication protocols of different flavors, including

JDBC/ODBC protocols, as well as native database com-
munication libraries. For historical reasons, widely differ-
ent protocol implementations may be introduced at differ-
ent points of time by the original database to deal with
new client types. In many cases, database clients become
non-functional with the slightest difference in behavior of
the database server. Emulating the protocol by producing
identical network traffic of the original database is crucial
to use clients functionalities. With Hyper-Q, the application
does not need to change at all in order to work with a new
database. The message exchange with the new database be-
comes bit-identical to the message exchange with the origi-
nal database.

4.1.2 Algebrizer
The statements submitted by an application are expressed

according to the query language of the original database.
Even when an application is built using standard JD-
BC/ODBC APIs, the SQL text submitted through these
APIs is specified according to the syntax and feature set of
the original database.

The original database language (or SQL dialect) could
be widely different from the query language expected by
the new database. The queries embedded in the applica-
tion logic would thus be mostly broken if executed without
changes on a new database. Query rewriting is necessary
to port applications written for the original database to the
new target database.

The Algebrizer component in Hyper-Q is a system-specific
plugin implemented according to the language specifica-
tions of the original database. It includes a rule-based
parser that implements the full query surface of the original
database and a universal language-agnostic query represen-
tation called eXtended Relational Algebra (XTRA) used to
capture different query constructs. Query algebrization is
performed place in two phases: (1) parsing incoming re-
quest into an Abstract Syntax Tree (AST) capturing high-
level query structure, and (2) binding the generated AST
into XTRA expression, where more involved operations such
as Metadata lookup and query normalization are performed.

4.1.3 Transformer
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XTRA is a powerful representation that lends itself to
performing several query transformations transparently for
query correctness and performance purposes. The Trans-
former component is the driver responsible for triggering
different transformation rules under given pre-conditions.
The transformations are plug-able components that could be
shared across different databases and application requests.
For example, the original database may allow direct compar-
ison of two data types by implicitly converting one to the
other. The new database may not have the same capabil-
ity, and would thus require the conversion to be spelled-out
explicitly in the query request. In this case, a transforma-
tion that converts a comparison of two data types into an
equivalent comparison after explicitly transforming one of
the types to the other needs to be applied.

Transformations could also be used to improve the per-
formance of generated queries. For example, if the target
database incurs a large overhead in executing single-row
DML requests, a transformation that groups a large num-
ber of contiguous single-row DML statements into one large
statement could be applied.

Controlling which transformation are triggered against a
given query request is done by maintaining a map for each
target database system associating different XTRA opera-
tors with their corresponding transformations. Given an
algebrized XTRA expression that includes these operators,
the Transformer automatically triggers the relevant transfor-
mations to generate a new XTRA expression after applying
transformations logic. Transformations could be cascaded,
where the output of one transformation represents a valid
input to another transformation. The Transformer takes
care of running all relevant transformations repeatedly until
reaching a fixed point, where no further modifications to the
XTRA expression via transformation is possible.

4.1.4 Serializer
Different database systems assume different SQL dialects.

This means that we typically need to generate different SQL
syntax depending on the type of target database system the
application is re-platformed for. This is implemented using
the Serializer component of Hyper-Q. Each target database
has its own Serializer implementation. These different seri-
alizers share a common interface: the input is an XTRA ex-
pression, and the output is the serialized SQL statement
of that XTRA. Serialization takes place by walking through
the XTRA expression, generating a SQL block for each op-
erator and then formatting the generated blocks according
to the specific keywords and query constructs of the target
database.

4.1.5 Data Ingestor
The Data Ingestor component is an abstraction of ODBC

APIs that allows Hyper-Q to communicate with different
types of target database systems in an abstract fashion. The
APIs provide means to submit different kinds of requests
to the target database for execution, ranging from simple
queries/DML requests to multi-statement requests, param-
eterized queries, and stored procedure calls.

The results of these requests are retrieved by Data In-
gestor on demand in one or more batches depending on the
result size. Result batches are packaged according to Hyper-
Q binary data representation, called Tabular Data Format
(TDF), which is designed to be an extensible binary format

that is able handle arbitrarily nested data. By relying on the
TDF representation, the Data Ingestor handles data retrieval
in a number of non-straightforward scenarios including han-
dling very wide rows and extremely large result sets.

4.1.6 Result Converter
The query results in TDF representation cannot be con-

sumed directly by the application, since the application
expects query results to be formatted in a specific way,
as defined by the binary representation of the original
database. Hyper-Q needs to do on-the-fly result conversion
from TDF into the binary representation that application
expects. The Result Converter is the driver for such opera-
tion.

TDF packets are unwrapped by Result Converter to ex-
tract result rows and convert them into the binary format
of the original database. This conversion operation happens
in parallel by starting a number of processes where each pro-
cess handles the conversion of a subset of the result rows.
If the original database allows streaming query results to
the application, the converted results are streamed directly
to Protocol Handler which packages them into network mes-
sages to be sent back to the application.

Alternatively, the original database may not allow stream-
ing the results. For example, some databases require that
the total number of results is sent to the application first
before sending any actual result. In this case, the Result
Converter needs to buffer all result rows until they are fully
consumed from the target database. When the result size is
very large, the buffered results may not fit in memory. In
this case, the Result Converter spills the buffered results into
disk and maintains the set of generated spill files until result
consumption is done. At this point, the converted results
are sent to Protocol Handler to be packaged into messages
returned back to the application.

4.2 Query Rewriting
In this section, we walk through the architecture of Hyper-

Q to illustrate its powerful query rewriting capabilities. We
use the following simple example for illustration.

Example 2 Consider the following query:

SEL ∗
FROM SALES
WHERE (AMOUNT, AMOUNT ∗ 0 . 8 5 ) >
ANY ( SEL GROSS, NET

FROM SALES HISTORY ) ;

The query uses a quantified subquery construct that
is not natively supported by many target database
systems. The construct assumes the following seman-
tics of vector comparison: (AMOUNT,AMOUNT ∗
.85) > (GROSS,NET ) ⇐⇒ (AMOUNT >
GROSS) ∨ (AMOUNT = GROSS ∧ AMOUNT ∗
.85 > NET ). That is, the query finds sales with
amounts exceeding any gross sales amount in sales
history such that ties are broken using net values.

The generated XTRA expression after the binding

phase is given in Figure 4, which is a normalized re-

lational algebra expression that captures the input

query. XTRA builds on an uniform algebraic model,
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+-select
|-get (SALES)
+-subq_quantified (GT , ANY)

|-remap columns: (GROSS , NET)
| +-get (SALES_HISTORY)

+-list
|-ident (SALES.AMOUNT)
+-arith (op:*)

|-ident (SALES.AMOUNT)
+-const (0.85)

Figure 4: Generated XTRA for Example 2

where the output of a given operator depends on op-

erator’s inputs as well as operator’s type. Differ-

ent constructs in the query body are captured us-

ing different XTRA operators with well-defined se-

mantics. For example, subq quantified operator cap-

tures quantification with (GT, ANY) over a subquery.

The inputs to this operator are a relational expres-

sion that emits rows with two columns (SEL GROSS,

NET FROM SALES HISTORY)), we well as a compar-

ison expression ((AMOUNT, AMOUNT * .85) > . . . ),

which is captured using a list of scalar operators cap-

turing vector comparison semantics. The output of

subq quantified is a boolean value that reflects the

comparison final result. 2

For some target databases, the generated XTRA in Fig-
ure 4 cannot be used directly to generate SQL in its cur-
rent form. The reason is that such target databases do not
understand vector comparison, and would thus raise a syn-
tax error. In this case, the Transformer needs to modify
the generated XTRA to match the capabilities of the tar-
get database system. This can be done by a transformation
triggered before serializing the generated XTRA. The trans-
formation detects patterns where subq quantified operator
uses vector comparison. The transformation replaces such
quantified subquery pattern with a semantically equivalent
existential correlated subquery.

Figure 5 shows the new transformed XTRA, which can now
be serialized into SQL that is compatible with the target
database as given by the following query:

SELECT ∗
FROM SALES S1
WHERE
EXISTS
(

SELECT 1
FROM SALES HISTORY S2
WHERE ( S1 .AMOUNT > S2 . GROSS)
OR ( S1 .AMOUNT = S2 . GROSS

AND S1 .AMOUNT ∗ .85> S2 .NET)
) ;

In practice, the quantified subquery pattern in Example 2
could be embedded in far more complex queries. Hyper-Q is
a principled framework that can handle more complex query
rewriting cases via transformations.

4.3 Feature Augmentation
The features used by queries in client application may be

completely missing in the target database. Sophisticated
data warehouse features (e.g., stored procedures, recursive

+-select
|-get (SALES ‘S1 ’)
+-subq_exists

+-select
|-remap consts: (1)
| +-get (SALES_HISTORY ‘S2 ’)
+-boolean (op:OR)

|-comp (cmp:>)
| |-ident (S1.AMOUNT)
| +-ident (S2.GROSS)
+-boolean (op:AND)

|-comp (cmp:=)
| |-ident (S1.AMOUNT)
| +-ident (S2.GROSS)
+-comp (cmp:>)

|-arith (op:*)
| |-ident (S1.AMOUNT)
| +-const (0.85)
+-ident (S2.NET)

Figure 5: Transformed XTRA for Example 2

queries and updatable views) that are missing in target
databases are still supported in Hyper-Q by emulation. In
order to support these features, streamlined query rewriting
is not a viable option. Hyper-Q breaks down these sophis-
ticated features into smaller units such that running these
units in combination gives the application exactly the same
behavior of the main feature. We describe how emulation
of missing features is enabled by Hyper-Q using recursive
queries as an example.

Example 3 Given an employee relation
EMP(EMPNO,MGRNO), consider the following recur-
sive query which computes all employees reporting
either directly or indirectly to emp10:

WITH RECURSIVE REPORTS (EMPNO,MGRNO) AS
(

SELECT EMPNO,MGRNO
FROM EMP
WHERE MGRNO = 10

UNION ALL
SELECT EMP.EMPNO,EMP.MGRNO
FROM EMP, REPORTS
WHERE REPORTS .EMPNO = EMP.MGRNO

)
SELECT EMPNO FROM REPORTS ORDER BY EMPNO;

Figure 6 shows hierarchical employee-manager sam-

ple data for the EMP relation. 2

Recursive queries are introduced in the SQL standard as
a way to handle queries over hierarchical model data. By
introducing a common table expression that includes self
references (e.g., REPORTS.EMPNO inside the definition of
REPORTS), the database system is required to run query re-
cursion until reaching a fixed point, where further recursion
does not introduce any new results.

When query recursion is not natively supported by the
target database, there is no direct translation that could be
utilized to generate a single SQL request equivalent to a
recursive query. However, a deeper analysis shows that the
computation of recursive queries relies on simpler constructs
that might be readily available in the target database. In
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Figure 6: Emulating recursive query in Example 3

particular, using a sequence of temporary table operations,
recursion can be fully emulated.

Hyper-Q emulates query recursion using two temporary
tables: TempTable, which stores the results of current re-
cursive call, and WorkTable, which stores the full results of
previous recursive calls. At each recursive step, the contents
of TempTable are appended to WorkTable. Recursion ends
when TempTable contains no results.

Figure 6 shows the sequence of temporary table opera-
tion performed by Hyper-Q to emulate the execution of the
previous recursive query:

1. Initialize both WorkTable and TempTable with the re-
sults of seed expression, which is the first UNION ALL
input: {(e8, e10), (e9, e10)}.

2. Execute recursive expression by joining EMP with
TempTable. Append the results {(e7, e8)} to Work-
Table which becomes now {(e8, e10), (e9, e10), (e7,
e8)}. TempTable= {(e7, e8)}. Recursion needs to con-
tinue.

3. Execute recursive expression by joining EMP with
TempTable. Append the results {(e1, e7)} to Work-
Table which becomes now {(e8, e10), (e9, e10), (e7, e8),
(e1, e7)}. TempTable= {(e1, e7)}. Recursion needs to
continue.

4. Execute recursive expression by joining EMP with
TempTable. The result is empty and so recursion stops.
Drop TempTable.

5. Substitute references of REPORTS with WorkTable
in main query, and execute modified query SELECT
EMPNO FROM WorkTable ORDER BY EMPNO;.

6. Return results of main query to client application.
Drop WorkTable.

In the previous example, Hyper-Q generates multiple
query requests, and maintaines the state of recursion by in-
specting the results of these requests. The behavior from
application stand point remains the same, where the results
of the recursive query are obtained with exactly the same
behavior of the original database system.

5. VIRTUALIZATION USE CASES
During our engagement with customers and prospects, we

have identified several major approaches to moving to the
cloud, which we detail next. Those are visually depicted in
Figure 7.

5.1 Complete drop-in replace
In the past months we have seen multiple cases where

enterprises across different verticals have undertaken cam-
paigns to reduce their data center footprint and vendor li-
censing fees and move their operations to the cloud. Due to
the difficulties outlined in Sections 1 and 2, most of those
enterprises have been reluctant to pursue such a project as
it often meant a costly multi-month and high-cost invest-
ment, which often exceeds the cost savings of the cloud,
and poses high risks to the business. A small fraction of
those customers have also tried looking positively at the
challenge: a rewrite of the applications to enable porta-
bility across databases also means those applications can
be modernized or otherwise optimized to keep up with the
ever-changing technologies. However, even those optimistic
customers have more often than not given up on the “appli-
cation modernization” idea after they realize the magnitude
of the migration efforts involved in simply porting the ap-
plication without any change.

ADV enables instantaneous deployment of existing appli-
cations on the cloud, as shown in Figure 7 (a). Moderniza-
tion of applications can happen gradually, if the enterprise
wants to invest in this. What is more, developers now have
the choice what query language they want to use for their
new applications: if they feel more comfortable with the old
query syntax, they can keep using that, or they can switch
to the language of the new database, while keeping the guar-
antee that their application will not only work, but also be
portable in the future.

5.2 Disaster recovery
In several cases we have encountered customers who are

happy with their existing on-premise database and want to
keep it, but want to add a cloud database to the mix for
disaster recovery purposes, as shown in Figure 7 (b). The
cloud database in those scenarios is often not fully utilized,
thus incurring significantly lower costs compared to main-
taining a second on-premise installation. This scenario poses
significant challenges to the enterprise, as the same applica-
tions now need to run on two potentially different database
installations. While multiple database vendors are now com-
ing up with cloud offerings of their solutions, the latter are
not always fully compatible with the on-premise distribution
and many features may have been disabled for performance
reasons. So the only remaining solution used to be maintain-
ing two different versions of the application for the different
database vendors. In addition to the pure migration chal-
lenges outlined before, this has additional drawbacks as any
modification to the application (for example bug fixes or
new feature development) now needs to be applied in two
separate codebases. This obviously is highly undesirable.

ADV easily enables disaster recovery deployments across
different stacks as it does not require the original application
to be changed in order to have it execute on a different
platform. Application evolution can happen naturally on
the original code and does not need to be reimplemented for
the secondary database.
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Figure 7: Database Virtualization Use Cases.
(a) Drop-in Replace, (b) Disaster Recovery, (c) Scal-
ing Out

5.3 Scaling out applications
When moving from an on-premise to a cloud-based data

warehouse, customers do not want to experience perfor-
mance regressions. In one case, a customer’s throughput re-
quirements could not be met even when they used the largest
available instance provided by the cloud database.This could
be partially attributed to the fact that the existing on-
premise solution ran on dedicated hardware, and the cus-
tomer’s workload was highly optimized for that database.

A common solution for such case is to maintain multi-
ple replicas of the data warehouse and load balance queries
across them, as shown in Figure 7 (c). The ADV solution
on top can then automatically route the queries to the dif-
ferent replicas, without sacrificing consistency, and without
requiring changes to the application logic. We are currently
working on extending Hyper-Q to handle this scenario.

6. EXPERIMENTS
In this section we provide performance evaluation of our

framework for both synthetic and customer workloads, and
show that Hyper-Q introduces negligible overhead to the ex-
ecution of analytical queries in a cloud database.

6.1 TPC-H
For this experiment we ran the 22 queries of the TPC-H

benchmark1 on a 1TB of data stored in one of the leading
cloud databases. The cloud database was provisioned as a 2
node cluster, where each node had 32 virtual cores, 244GiB
of main memory and 2.56TB of SSD storage. We used Ter-
adata’s bteq client to submit queries to Hyper-Q, and we
cleared the database cache before every execution.

For each query we measured the following times:

• Query translation time: Time spent by Hyper-Q to
translate the query from the original SQL dialect to
the SQL dialect used by the cloud database, including
parsing, binding, backend-specific transformations and
emitting the final query into the target language

• Execution time: Time taken by the cloud database to
execute the query and return the results

• Result transformation time: Time taken by Hyper-Q
to transform the results to Teradata’s native format

1http://www.tpc.org/tpch/

Figure 9(a) shows that the total overhead introduced by
Hyper-Q with respect to the end-to-end execution time is
less than 2%, with around 0.5% for query translation, and
around 1% for result transformation. The break down by
query is depicted in Figure 8. While the time for query
translation is negligible for all queries, there is query 11,
which shows a relatively larger overhead for result transfor-
mation. This can be attributed to the fact that this query
returns larger result sets. While most analytical queries typ-
ically return smaller aggregated results, we are currently
working on improving our data processing pipeline, includ-
ing building an ODBC bridge to avoid redundant mar-
shalling of data types for the cases where the original appli-
cation uses ODBC as well.

6.2 Stress Test
This experiment mimics a real-world application scenario

for a Fortune 10 customer that used Hyper-Q to re-platform
applications from Teradata to a leading cloud data ware-
house. A customer application starts ten simultaneous ses-
sions to connect to the underlying database. Each session
continuously sends queries through Hyper-Q. The cloud data
warehouse was configured to use the most powerful available
specifications, and was manually tuned to achieve the high-
est possible performance for the workload. The test lasted
for 17.5 hours, submitting a total of 967,506 queries captur-
ing customer’s peak load for generating analytical reports.
The submitted queries had a rich set of features, including
many of the features in Figure 2 such as QUALIFYclause,
named expressions, implicit joins and vector subqueries.

To mimic that scenario, we used a similar setup to the
one used in section 6.1. However, instead of using a single
Teradata’s bteq client, we used ten clients, each repeatedly
sends TPC-H queries through Hyper-Q to execute on the
cloud data warehouse. We let the experiment run for several
hours and then collected the aggregated query translation
time, execution time and result transformation time.

Figure 9(b) shows that in our stress test scenario, Hyper-
Q overhead is a tiny fraction with respect to end-to-end
execution time. In particular, the total overhead of Hyper-Q
is between 0.1% and 0.2% of the total execution time. This is
due to the fact that while the query execution time increases
substantially with the level of query concurrency, Hyper-Q
only introduces a small constant overhead per query.

7. RELATED WORK
The problem of database migration is as old as databases

themselves. Naturally, a number of approaches, systems and
strategies have been developed over the past decades.

The prevalent technique is manual migration often exe-
cuted by third party consultants. Any manual migration
is inherently non-scalable, i.e., the number of person-years
required is proportionate to the number of applications and
lines of SQL code.

7.1 Database Migration Utilities
A variety of proprietary tools have been developed in this

space to aid in the otherwise manual process [3,5,8]. These
tools address primarily the content transfer and as such ad-
dress the lesser of the actual challenges. Several of these sys-
tems also provide general SQL rewrite capabilities as needed
to rewrite certain schema features like views as mechanisms
to rewrite application logic. They are advertised as aiding
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Figure 8: Break down of running time (in sec) for the queries of TPC-H by individual query

in manual migrations but do not claim to be actually full
automations.

7.2 Remote Query Extensions
Instead of addressing the challenges of migrations, a class

of database or database-like systems exists that effectively
reduces the need for migrations by making other databases
accessible through the original database. That way, a new
database can be integrated as a subordinate database. This
kind of technology has long existed in most commercial
databases [9,10] and most recently in Teradata Query Grid
[11]. In all cases, the old database remains the main access
point. New databases are only added but will not replace
the old database. These should be viewed as a tactical move
by database vendors to preserve their footprint. The main
drawback of these systems is that they still require the old
database to remain functional indefinitely.

7.3 Query Federation
Similar to the previous category, query federation systems

address the problem of integrating new data sources and has
seen a lot of interest in the research community since the
mid 1980s [16, 17, 19, 20, 23], where the focus is on source
selection and pushing computation as close to the source
as possible. Commercial implementations are few and far
between [4, 15, 21]. However, they cannot close the gap be-
tween applications and federation system in that a migration
to the federation system is necessary. As a result, federa-
tion systems have yet to establish a credible footprint in the
industry.

7.4 Database Virtualization
Adopting elements of a competitor’s feature set has a

long tradition in the database industry. Several commercial
database systems feature compatibility modes to accommo-
date language features of competitors. Examples include
EnterpriseDB which mimics Oracle [6], or ANTS, a now de-
funct company that enabled IBM DB2 to mimic Sybase [1].
These approaches are limited to language features only and
while they mitigate some of the rewriting effort do not elim-
inate the problem at all. Most notably, the application still

needs to be converted and use the new drivers and connec-
tivity libraries. These approaches do generally not go far
enough and still do not break the non-scalable nature of a
manual migration.

[13] lays the foundation to our current approach. In
this paper, we transfer some of the ideas presented there
to cloud-native databases. In particular, we implemented a
complete front-end emulation for Teradata, one of the most
prevalent data warehousing systems across Fortune 500 com-
panies.

8. SUMMARY
We presented, Datometry Hyper-Q a complete and

production-ready implementation of ADV to address what
has become one of the biggest obstacles in adoption of
new data management technology: how to preserve long-
standing investments in application development when mov-
ing to the cloud and replacing conventional databases with
cloud-native systems.

ADV is a holistic and powerful vision built on the key
insight that intercepting the communication between appli-
cation and database leads to a fundamentally different and
much more efficient approach compared to the conventional
re-platforming.

8.1 Discussion
Using a select number of examples, we demonstrated the

viability of this approach both from a functional as well
as operational point of view. Due to space constraints, we
could survey only a small fraction of the functionality im-
plemented in Datometry Hyper-Q. The system is in use at
a significant number of Fortune 500 companies already.

It should be pointed out that the interplay between
Hyper-Q and the replacement database system is critical for
the success. By selecting a specific replacement system, cus-
tomers make a deliberate choice that not only affects them
from a customer relationship perspective but needs to take
functional, performance, and scalability requirements into
account. Hyper-Q is a highly effective selection tool that
lets customers trial the new database system at virtually no
cost and risk.

While situations are conceivable where the feature gap
between systems is so wide that closing it using ADV is no
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Figure 9: Overhead of Hyper-Q below 2% and 0.3%
of total query response time respectively.

longer cost-effective, we have not experienced this in practice
to date.

8.2 Market Dynamics
The feasibility and realization of an ADV concept in the

form of Datometry Hyper-Q has seen enormous acceleration
through cloud-shift [2], the ubiquitous industry trend of con-
solidating data management into public or private clouds.
Within the next years, this trend is expected to accelerate
even further transforming the database market, one of the
most coveted and established pillars of the overall IT market
completely.

We have chosen data warehousing as a starting point and
first candidate based on market demand and availability of
cloud-based database systems with appropriate capabilities.
Going forward we plan to broaden the scope to include also
transactional systems as we see customers increasingly in-
quire about these systems already.

8.3 Future Work
Supported by the overwhelmingly positive reception by

customers and prospects, we believe ADV has much larger
application. Specifically, ADV is not only means to facilitate
re-platforming but will become an integral part of the IT
stack. Becoming a universal connector between applications
and databases can break open data silos, make data freely

usable across the enterprise, and accomplish all this with-
out the need to restructure or rewrite applications. With
a broad agenda to add functionality, support for additional
and emerging technologies ADV should be seen as a de facto
insurance policy for the enterprise and its data strategy.
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